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Abstract

Automatic signature verification has been extensively researched for a long time and has already been used in many fields 
like banking, security, and other authentication purposes. However, human experts still play a dominant role in the field of foren-
sic handwriting examination. Only a few studies have been conducted on the use of computers in assisting handwriting experts. 
There are also fewer attempts to perform the examination based on only a single known sample. 

We built a deep learning based assistance method for signature examination in our previous work. The method can deal with 
the problem of signature verification by single known sample, and is based on an explainable deep learning approach (by using 
deep convolutional neural network, DCNN). This paper is a continuation and refinement of our previous work. We refine the 
interpretability of the model and present application scenarios for assisting signature examination. After improving the interpret-
ability of the model, the proposed method can be used as an assistant system by providing quantitative results. The visualized 
heatmaps can also be used to identify genuine or suspicious strokes in disputed signatures.
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Introduction

Handwritten signature verification is one of the 
most important biometric technology and has been 
widely applied in commercial authentication and forensic 
examination. In practice, the signature examination is 
carried out by trained experts, especially in court. To 
improve reliability and efficiency, automatic signature 

verification has been studied [1]. However, compared 
with other biometric methods, handwritten signature 
verification has the properties of relatively high intra-class 
variability (the variability among an individual’s genuine 
signatures) and low inter-class variability (the variability 
between genuine signatures and skilled forgeries).Even  
for human examiners, it is not an easy work of disting-
uishing between genuine signatures and forgeries. For 
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these reasons, although automatic signature verification 
has been widely studied, it remains a challenging pro-
blem.

Automatic off-line signature verification methods 
can be classified into two categories: handcrafted 
feature extractors and deep learning approaches [1]. 
Recently, the deep learning approaches have shown the 
great capability of image recognition and detection. 
For example,  the convolutional neural network (CNN) 
is a specialized type of neural networks which apply 
the convolution function to feature extraction. CNN is 
widely used in image recognition and other related fields.

Deep learning algorithms are effective when applied 
to large-scale datasets. Therefore, most of learning based 
signature verification studies require several (more 
than one) signature samples to train the networks [2-5]. 
Khalajzadeh et al. [1] proposed a deep CNN method for 
author classification, which can directly learn features 
from signature image pixels. Hafemann et al. [6] used a 
CNN based method that can extract stable features from 
variable-size signatures. 

Although deep learning-based approaches have 
shown their great capability in signature verification 
and other pattern recognition areas, the sample size 
limitation has led to an critical problem. We can improve 
reliability of approaches with vast amounts of reference 
samples, but the cost for sample collecting and system 
implementation is high. In some applications, such as 
signature verification, it is usually not easy for us to 
get a lot of sample data. For these reasons, the idea of 
using small scale datasets for deep learning has gotten 
considerable attention in recent years.

Signature verification with single reference signature  
is a challenging task due to the large intra-class variability.  
That is the reason that the single reference based app-
roachs are more applicable in practical applications, but 
it has still attracted less attention. Adamski and Saeed [7] 
proposed a sampling algorithm to acquire the vector based 
feature from a preprocessed one-pixel-wide signature. 
Their algorithm is based upon a traditional handcrafted 
feature extraction method. Unfortunately, their method 
can only deal with random forgeries (other unrelated 
signatures), so it is not capable of detecting skilled  
forgeries. 

Our work tries to address the following two issues that 
deserve attention. First, handwritten forensic examiners 

need a suitable computer-aided examination tool that 
can provide a quantitative assessment. Secondly, it is 
difficult for front-line investigators to obtain sufficient 
reference signature samples. When the case is still under 
preliminary investigation, front-line investigators also 
need an examination tool to assess the genuineness of the 
questioned signature samples quickly (based on a small 
number of samples). 

To overcome the problem of insufficient genuine 
samples when using deep learning methods, we choose 
an alternative strategy to make our training feasible. First, 
our method is based upon local features instead of the 
whole signature image. It is very different from previous 
signature verification research work. We divide a signa-
ture image into many overlapping sub-image blocks 
and apply a series of data augmentation techniques to 
initially expand the training samples. More details will be 
presented in the subsection “Data preprocessing.” Since 
we are dealing with a binary classification task (genuine 
and forged). We can shift the focus of our system to learn 
“what is forged signature” and let the networks learn 
useful features from a lot of forged signatures, which 
are relatively easy to obtain and can even be created by 
researchers. Once our system can detect the features of 
forgeries, our goal of distinguishing between genuine 
and forged is basically achieved. Secondly, a lot of deep 
learning-based signature verification methods have 
already proven their superior performance. However, 
none of them can be applied to practical forensic  
document examination. The most important problem is 
that deep learning methods are generally opaque and lack 
explainability, which means they cannot explain why and 
how they make a specific decision (genuine and forged). 
Consequently, the main purpose of our work is to 
enhance the explainability by using visual interpretation 
techniques, and present the visualization results to hand-
writing experts.

We have built a deep learning based method (with 
the supervised learning) to automatically detect forged 
signatures in our previous work [8]. The method is to 
deal with the problem of signature verification by single 
known sample. As an assistant system for forensics, the 
proposed method can classify the disputed signature 
as the skilled forgery or the genuine one. In this paper, 
we refine the explainability of the model and present 
application scenarios for assisting signature examination. 
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Materials and Methods 

Materials
Our experimental signature samples are collected 

from ICDAR 2011 SigComp dataset [8]. This dataset is 
used for signature verification competition, and its offline 
section contains different sample sizes of skilled forgeries 
for each genuine signer. Each genuine signer corresponds 

to 2~4 forged signers, and each forged signer contributes 
four skilled forgeries. 

The data collection procedure is based on our previous  
work [9]. Since ID 014 and ID 016 signers’ signatures in 
the dataset have the largest number of forged reference 
signatures (16 skilled forgeries from 4 signers), we can 
use them for both processes of training the network and 
evaluating the performance, as shown in Fig. 1. 
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Fig. 1 Data collection: sub-datasets used for the experiment [9,10].

In Fig. 1, each sub-dataset (ID 014 and ID 016) 
contains eight genuine signatures from a genuine signer 
(No.1~8 in genuine signatures) and sixteen forged 
signatures from four different signers (each signer 
provides four forged signatures). Please note that the last 
signer (signer 4) is only used to evaluate the effectiveness 
of the network, and does not participate in the training 
and verification stages. 

CNN Architecture
A convolutional neural network (CNN) [11] is a 

branch of deep learning networks and has demonstrated 
great success in many computer vision applications, 
such as image classification, pattern recognition, object  

detection, etc. Moreover, in the image recognition area,  
several researchers have claimed that their CNN app-
roaches can achieve human-level [12] or even super-
human performance [13-15]. In this paper, we use In-
ception V3 architecture [16] for our experiments. The 
research work by Simonyan and Zisserman [17] has 
shown that the depth of CNN network plays a crucial 
role in classification accuracy. Inception V3 is a very 
deep CNN architecture developed by Google research 
team and has already proven its great performance in 
ImageNet object classification competition [15]. The 
CNN used in our work consists of following components: 
convolutional layer, pooling layer, dropout layer, fully-
connected layer, and sigmoid layer, as illustrated in Fig. 2.
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Fig. 2 The schematic diagram of CNN architecture (Inception V3) used in our 
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Fig. 2 The schematic diagram of CNN architecture (Inception V3) used in our experiment [16].

The convolutional and pooling layers run the feature 
extraction work (will be described later). The concat 
layer merges the multiple inputs from the previous layers. 
The fully connected layer is basically a traditional multi-
layer perceptron (MLP) neural network that used for 
the classification task. In the dropout layer, about 50% 
of perceptrons will be temporarily ignored (drop out) 
randomly during the training process. This technique is 
widely used to prevent neural networks from overfitting. 

Finally, considering that our network model is designed  
to solve the binary classification problem (genuine and 
forged). We use the sigmoid function as the output layer 
to handle our binary classification outputs (instead of the 
softmax function, which is originally used in Inception 
v3 architecture). The sigmoid function generates an 
s-shaped curve whose values lie between 0 and 1. It can 
be defined as follow:

p =  Sigmoid (x) =  
1

1 + e-x  .

In this work, the output value of sigmoid layer (p) 
represents the probability of genuine signature, and the 
probability of the forged category is (1-p).

Convolutional Layer

The CNN architecture is mainly constituted by 
convolutional layers [18]. Each convolutional layer 

contains multiple convolution filters to extract high-level 
features from low-level information. In our signature 
verification system, the convolution filter can gradually 
detect edges, corners, connection points, and other 
higher-order features ( e.g. quality of strokes) from the 
original signature image.

The convolution filter can be seen as a sliding-
window to path over the entire image. The sliding area 
is multiplied by the filters and its sum is saved as a new 
feature map pixel. Also, to prevent imperfect border 
overlays, the border pixels are filled with zero values, as 
shown in Fig. 3.
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Pooling Layer 

 Pooling layers play an important role in CNN [19-21]. In a CNN, intermediate 

layers serve as the features generator for the previous layer and flow their outputs to 

the next layer. Due to the large number of convolution operations in CNN, the size of 
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Convolution filter 

Feature map Input image 

(0×1) + (0×1) + (0×0) + 
(0×1) + (1×0) + (2×1) + 
(0×0) + (1×1) + (2×1) = 5 

Fig. 3 �An example of a convolution filter  
 with zero padding.
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Pooling Layer

Pooling layers play an important role in CNN [19-
21]. In a CNN, intermediate layers serve as the features 
generator for the previous layer and flow their outputs to 
the next layer. Due to the large number of convolution 
operations in CNN, the size of the feature map will grow 
dramatically and greatly increase the computation cost. 
Therefore, we need the pooling layer to reduce the size of 
feature maps. And this leads to a faster convergence rate 
as well as a better performance for training networks. 

In this paper, we use two different types of pooling 
layers: max-pooling and average-pooling, as shown in 
Fig. 4.
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Max (1, 2, 1, 4) = 4 

Avg (1, 2, 1, 4) = 2 

Fig. 4 The pooling process with a 2×2 filter.

Fig. 4 illustrates the difference between the max-
pooling and average-pooling processes. Theoretically, the 
max-pooling process can reduce background noise and 
extract the most important texture features. Whereas the 
average-pooling process extracts feature more smoothly, 
and thus more overall information can be reserved to the 
next layer for further feature extraction.

Explainable Deep Learning

Most deep learning-based models are complex and 
work as a black-box. This results in deep neural networks’  
decisions are generally opaque. In order to make deep 
learning more explainable, the related research is called 
explainable AI (or XAI) and has attracted more and 
more attention in recent years. The gradient-based 
visual saliency method [22] is one of the most important 
approaches for XAI in the computer vision field. Its 
main idea is to visualize the decision-making process 

by marking the image pixels which are sensitive to the 
neural networks. This is the main idea of the saliency 
map.

The saliency map is generated by calculating the 
gradient of category-specific scores from a given classifier.  
The gradient indicates how much the change in a pixel 
will influence the classifier output. In our work, the 
gradient map itself can be regarded as a saliency map. 
The saliency map can be used to check whether the 
network’s decision is consistent with human cognition, 
as shown in Fig. 5.
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Fig. 5 �Saliency maps for the CNN classifiers. (a) A Bird 
image and its saliency map (marked by grayscale), 
taken from [22]; (b) a signature image and its 
saliency map in our experiment (marked by jet-
colormap).

Experimental Design

Since this paper is to extend our previous work, 
we summarize the experimental design and network 
training results briefly [9]. The proposed network system 
is designed to be used under the condition of only single 
genuine reference sample. Before that, the system is 
trained by sufficient local features from additional 
forgeries. In order to check whether our system can learn 
some useful and ubiquitous forgery features (existing in 
signatures of different forged signers) that can be used 
to detect forgeries. We design six experiments by using 
two sub-datasets with different genuine signers, and then 
arrange forgery samples of different sizes for controlled 
experiments, as shown in Table 1.
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Table 1 The summary of the experiment with different sample sizes [9]. 

Sub 
dataset Group Exp No. Exp. Stage Genuine

Signatures

Forged signatures from 

signer 1 signer 2 signer 3 signer 4

ID 14
(Exp.1-3)

/
ID 16

(Exp.4-6)

Control Group Exp.1,4

Training No.1 No.1,2 No.1,2 No.1,2

Validation No.2−4 No.3,4 No.3,4 No.3,4

Testing No.5−8 No.1−4

Experiment
Group

Exp.2,5

Training No.1 No.1,2 No.1,2

Validation No.2−4 No.3,4 No.3,4

Testing No.5−8 No.1−4

Exp.3,6

Training No.1 No.1,2

Validation No.2−4 No.3,4

Testing No.5−8 No.1−4

In Exp.1 and Exp.4, we use the complete dataset 
(with three forged signers and six forgeries) as our control 
group. While the remaining experiments with different 
forgery sample sizes are served as the experiment group 
to confirm our assumption.

The “Development environment” and “Data 
Preprocessing” can be found in [8].

Experimental Results

Networks Performance

In the training process, we use a popular optimization  
technique, called the stochastic gradient descent (SGD) 
algorithm [23], to optimize our networks. After network 
training and validation, theatrically we can get a well-
trained classification model. To further verify whether 
our networks can be used by the completely unknown 
signer. We test the networks with new signers’ signatures 
that are not present before (not available in the training 

and verification stages). Then we use the following 
equations [24] to evaluate the network performance 
during the training, verification, and testing stages.

ACC =  
TP+TN

TP+FP+FN+TN
  × 100%

FRR =  
FN

TP+FN
  × 100%

FAR =  
FP

FP+TN
  × 100%

where ACC = Accuracy, TP = True Positive, FP 
= False Positive, TN = True Negative, FN = False 
Negative, FRR = false rejection rate (or type I error), 
and FAR = false acceptance rate (or type II error). Thus, 
higher accuracy and lower error rate (FRR/FAR) can 
be considered as better performance, as summarized in 
Table 2.
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Table 2 The summary of training results [9].

Sub dataset ID 14 16

Exp. ID Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6

Forged author Num. 3 2 1 3 2 1

Forged signature Num. 6 4 2 6 4 2

Train accuracy (%) 99.93 100 99.67 100 99.97 100

Validation accuracy (%) 100 100 95.66 98.96 97.56 99.98

Test accuracy (%) 99.96  99.98 76.93 94.37 90.23 90.85

Test FAR (%) 0 0 27.81 5.88 15.16 2.83

Test FRR (%) 0.22 0.07 1.47 5.34 3.66 16.31

Visualization

Most deep learning methods are generally opaque 
and lack explainability. We try to understand the process 
by visualization. Fortunately, since our samples are 
images,  it is easier for us to visualize the processed results  
of convolution filters and saliency maps.

Visualization (Part-1): The Processed Results 
of Convolution Filters

The visualization figures of the convolved results 
can help us to understand the CNN feature extraction 

process. The Inception V3 network has 6848 filters 
totally [25]. There are several filters in each convolution 
layer. In order to visualize the convolved results of the 
filters, we input some grayscale random noise images to 
the network, as shown in Fig. 6. Then we let the filters 
optimize (convolve) these random images, and get the 
convolved results. Fig. 7(a)-(f) show the convolved results  
of the first nine filters of some layers. We can see 
some “spots” and “line textures” in Fig. 7(a) and (b), 
respectively. As the depth of the network is increased, 
these filters create increasingly complex patterns. From 
layer to layer, the convolution filters can gradually capture  
the higher-level of abstraction features.

17 
 

7(a) and (b), respectively. As the depth of the network is increased, these filters create 

increasingly complex patterns. From layer to layer, the convolution filters can 

gradually capture the higher-level of abstraction features. 
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Fig. 6 The input grayscale random noise images for the visualization of the convolved results of the filters.
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Fig. 7 The convolved results of the first nine filters of some layers: (a) layer  
1; (b) layer 3; (c) layer 4; (d) layer 10; (e) layer 40; (f) layer 94.

( a )

( c )

( e )

( b )

( d )

( f )



 Interpretable Signature Examination Assistance System 　17        

Visualization (Part-2): Saliency Maps

We generate the saliency maps of questioned sig-
natures and use them to make our method more explain-
able. These visualized results are based on the last fully-
connected layer of neural networks, and can be used to 
check whether the network’s decisions are reasonable. In 
this part of experiment, we arranged three genuine signa-
tures and three forgeries for verification (based on only 
single known sample). We also compare the results with 
human recognition by a forensic document examiner of 
Taiwan’s Criminal Investigation Bureau (CIB). The com-
parison of CNN architecture (Inception V3) visualization 
outputs and expert’s examination results are presented in 

Fig. 8(a)-(f). In the CIB forensic document examiner’s 
result (the bottom figures of Fig. 8(a)-(f)), the blue ar-
rows and dotted lines indicate the “similarities” in certain 
features, such as the stroke fluency, spacing, slant, rela-
tive positioning and formation of the stokes between the 
questioned signatures with the genuine signature. While 
the red ones indicate the “discrepancies” between them. 

For clearer visualization, we utilize the jet-colormap 
to represent intensity, then impose the saliency map on 
the original signature image (the top figures of Fig. 8(a)-
(f)). The jet-colormap returns color temperature from 
blue, green, yellow to red. It represents the intensity 
values between 0 to 1, the color scheme depicted in Fig. 
8(g). 

(a) genuine signature

(b) genuine signature
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(c) genuine signature

(d) forged signature

(e) forged signature
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(f) forged signature

(g) jet-colormap scheme

Fig. 8 The saliency maps and manual handwriting examination results of questioned signatures: (a-c) the  
 genuine signatures, (d-f) the skilled forgeries form three different signers, (g) jet-colormap scheme.

10

Discussion

After we visualize the CNN networks’ operation 
in Figs. 7 and 8, the convolved results of filtering and  
saliency maps can provide some insights into our 
signature examination work:

1.	 Overall, we can see that the verification processes  
and results of our network are reasonable. 
The visualization results mainly come from 
the signature itself rather than other unrelated 
noise (e.g. paper background or optical scanner 
device).

2.	 The saliency maps can show which strokes are 
important to the network’s decision (especially 
in those hotspot areas). For example, we find 
that the turning point and the intersection of the 
strokes are often used as important features for 
CNN signature verification.

3.	 CNN is particularly good at scrutinizing the 
stroke quality. Since most forged signatures 
show signs of hesitation, tremor, re-touching, 
pen-stops in the position where they are not 
expected, we can find awkwardly formed stokes 
in the saliency maps.

4.	 After comparing the saliency maps and expert’s 
examination results, we can find the human 
expert is better at examining the overall formation  
of the signatures. Considering that our CNN 
(Inception V3) system performs verification 
based on local feature blocks, such comparison 
results make sense.

5.	 Due to the limited capacity of human attention, 
the forensic document examiner only marks 
certain features on both genuine and forged 
signatures which are sufficient for him to reach a 
conclusion. However, the computer can tirelessly  
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mark all detected features without missing, and 
make quantitative measurements possible.

Conclusions

In this paper, we extend our previous work of using 
the deep learning based assistance method for signature 
examination. We use the visualization figures of the 
convolved results to help users to understand the CNN 
feature extraction process. We also generate the saliency 
maps of questioned signatures and use them to make our 
method more explainable. The proposed method can be 
used for preliminary automatic signature verification. 
Besides, it can easily work with human experts to obtain 
direct and strong effectiveness. In the future work, we 
expect that follow-up research can assist human experts 
to strengthen their cognitive abilities in the decision-
making process. 
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